
PRIME+RETOUCH:
When Cache is Locked and Leaked

Jaehyuk Lee
Georgia Institute of Technology

jaehyuk@gatech.edu

Fan Sang
Georgia Institute of Technology

fsang@gatech.edu

Taesoo Kim
Georgia Institute of Technology

taesoo@gatech.edu

Abstract—Caches on the modern commodity CPUs have
become one of the major sources of side-channel leakages and been
abused as a new attack vector. To thwart the cache-based side-
channel attacks, two types of countermeasures have been proposed:
detection-based ones that limit the amount of microarchitectural
traces an attacker can leave, and cache prefetching-and-locking
techniques that claim to prevent such leakage by disallowing
evictions on sensitive data. In this paper, we present the
PRIME+RETOUCH attack that completely bypasses these defense
schemes by accurately inferring the cache activities with the
metadata of the cache replacement policy. PRIME+RETOUCH has
three noticeable properties: 1) it incurs no eviction on the victim’s
data, allowing us to bypass the two known mitigation schemes, 2)
it requires minimal synchronization of only one memory access
to the attacker’s pre-primed cache lines, and 3) it leaks data via
non-shared memory, yet because underlying eviction metadata is
shared.

We demonstrate PRIME+RETOUCH in two architectures:
predominant Intel x86 and emerging Apple M1. We elucidate how
PRIME+RETOUCH can break the T-table implementation of AES
with robust cache side-channel mitigations such as Cloak, under
both normal and SGX-protected environments. We also manifest
feasibility of the PRIME+RETOUCH attack on the M1 platform
imposing more restrictions where the precise measurement tools
such as core clock cycle timer and performance counters are
inaccessible to the attacker. Furthermore, we first demystify
undisclosed cache architecture and its eviction policy of L1 data
cache on Apple M1 architecture. We also devise a user-space
noise-free cache monitoring tool by repurposing Intel TSX.

I. INTRODUCTION

Cache side-channel attacks have recently gained increasing
attention due to their broad impacts [8, 19, 25, 40, 41, 45, 54].
The majority of cache attacks rely on the observable timing
differences between a cache hit and a miss caused by the access
latency of memory hierarchies. By carefully manipulating a
target cache set, the attacker can force timing differences that
lead to leakage of the victim’s secret data.

As cache side-channel attacks have continuously broken
carefully designed systems, various detection and mitigation
techniques targeting them have been proposed [15]. Practical
and widely experimented defense mechanisms are based on the
assumption that cache side-channel attacks pose observable side
effects themselves as well. That is, detectable attacker efforts,
commonly forcing cache evictions, are required to capture
meaningful victim memory access activities. Therefore, several
mitigation proposals aim to detect such traces imprinted on
the cache by directly monitoring abnormal microarchitectural
behaviors [9, 11, 12, 36, 55]. Others seek to conceal the victim’s

access pattern by preloading all necessary data into the cache
before issuing sensitive memory operations [4, 6, 13, 29, 48].
Recently [17] demonstrated that locking the preloaded data in
the cache using transactional memory can further eliminate
cache evictions of preloaded data.

In this paper, we introduce a new attack, PRIME+RETOUCH,
that can leak information while maintaining the victim cache
state and minimizing microarchitectural traces, completely
bypassing the known mitigation techniques. The core idea of
PRIME+RETOUCH is to accurately infer the cache accesses
from the metadata of the cache replacement policy. More
specifically, after reverse engineering the Tree-based Pseudo
Least-Recently Used replacement policy (Tree-PLRU) of the
Intel and Apple M1 processors, we discover that the attacker
can learn the memory access history of a co-located victim from
the states of the Tree-PLRU’s tree-shaped metadata without
causing evictions of sensitive data and code.

PRIME+RETOUCH has three unique properties compared
with the popular forms of cache-based attacks [43, 54]. 1)
no eviction of sensitive data and code is required, 2) no
shared memory with the victim is required, and 3) the memory
access pattern is leaked through the metadata of the cache
replacement policy. The PRIME+RETOUCH attack proves that
it is possible to distinguish actual memory accesses without
accessing or evicting preloaded data, which completely breaks
the assumption of prefetch-based cache side-channel mitigations.
The PRIME+RETOUCH attack is also challenging to detect,
as the victim cannot identify the source of cache accesses
while PRIME+RETOUCH only requires single synchronized
cache access to one of the attacker-primed entries. Total
mitigation might even require hardware modifications regarding
the L1 cache replacement policy. To our best knowledge, the
PRIME+RETOUCH attack is the first cache side channel attack
that abuses L1 replacement policy to leak the victim’s access
pattern on Intel x86 and Apple M1 architectures.

However, it is non-trivial to reliably demonstrate
PRIME+RETOUCH in a modern CPU for three reasons: First, as
PRIME+RETOUCH does not directly rely on timing information,
it is hard for the attacker to synchronize with the victim’s
operations and interfere at the correct moment. Second, analysis
activities during attacks waste processor cycles and further
exacerbate the above challenge. Lastly, as Tree-PLRU is
sensitive to the order of cache accesses, unsynchronized cache
accesses from the attacker render undesired states of the Tree-
PLRU metadata that introduce no meaningful information
except noise.

ar
X

iv
:2

40
2.

15
42

5v
1

 [
cs

.C
R

]
 2

3
Fe

b
20

24

We successfully overcome those challenges by postponing
memory access analysis after the active attack phase using
the Tree-PLRU metadata and the novel technique of PLRU
Aware RETOUCH §V-C, which is the first of its kind comparing
to noisy realtime measurements adopted by traditional side-
channel attacks. We demonstrate realistic PRIME+RETOUCH
attacks in action (e.g., attacking AES T-Table) and show that the
attack successfully bypasses all prefetch-based countermeasures.
We further extend the PRIME+RETOUCH attack to Apple’s M1
platform. We have reported the PRIME+RETOUCH attack to
Intel and got acknowledged about the attack method.

Summary. This paper makes the following contributions:

• We introduce a novel method that allows noise-free L1
cache monitoring using Intel TSX in user space.

• We first study the cache architecture of Apple’s M1
processor using the undocumented performance counter
and expose the underlying Tree-PLRU policy of its L1
cache.

• We propose PRIME+RETOUCH, a metadata-based L1
cache side-channel attack that only requires a single
synchronized memory access without evicting the victim’s
data, and show how PRIME+RETOUCH completely breaks
the assumption of prefetch-based mitigations.

• We provide thorough analysis of the unique properties of
the Tree-PLRU eviction policy and develop techniques to
enable the attacker to synchronize with the victim and
make the PRIME+RETOUCH attack practical.

• We demonstrate that the PRIME+RETOUCH attack suc-
cessfully leaks victim secrets (e.g., access patterns in AES
T-Table) not only under settings assumed by traditional
side-channel attacks, but also SGX-protected environments

• We demonstrate that the PRIME+RETOUCH attack can be
extended to the M1 platform where no fine-grained timer
is available by purely leveraging the Tree-PLRU policy.

II. BACKGROUND

A. Cache Architecture

CPU caches are small but fast memory chunks located
between CPU cores and RAM. It serves to store data that the
CPU is most likely to need next. CPU caches are categorized
hierarchically according to their affinity to CPU cores. Tradi-
tionally, low-level caches (L1 and L2) are private to individual
CPU cores, smaller in size and closer to the processor and
thus faster, while the last-level cache (LLC) is bigger in size
and shared among cores. When simultaneous multi-threading
is enabled (e.g., hyperthreading in Intel), two logical cores can
share L1 and L2 caches.

CPU caches commonly adopt the W-way set associative
design, where the cache memory is divided into sets and each
set holds W lines of usually 64 bytes of data. To locate desired
data in a cache, bits of a memory address are divided into
different sections – offset to locate specific cache line, index
to determine the cache set, and tag to flag whether data is
cached – and utilized by addressing algorithms to derive the
exact location.

B. Cache Attacks and Mitigations

Cache attacks aim to leak information about whether specific
cache lines have been accessed by a victim program. Among

various sources of leakage, many of them utilize the time
difference between a cache hit and a cache miss. Since a cache
miss takes significantly longer to retrieve the desired data, the
attacker can infer memory access patterns of victim programs
by carefully manipulating cache lines mapped to the memory.

PRIME+PROBE. PRIME+PROBE attack and its variants [3,
14, 43] monitor victim access to cache lines within a specific
cache set throughout two phases. The attacker keeps accessing
the target cache set so that it is completely filled with the
attacker’s data (prime phase). Then, the attacker waits for a
predetermined amount of time and again accesses the data he
has loaded previously while measuring the load latency (probe
phase). If the victim has accessed the target cache set, some of
the attacker-primed data will be evicted, causing the reloading
of the attacker’s data to take longer due to cache misses. As
a result, the attacker can infer the victim’s memory access
activities at a cache set granularity. However, PRIME+PROBE
style attack incurs a significant amount of cache miss events,
making the attack more easily detectable.

Preloading and cache pinning. For decades, researchers have
been trying to mitigate cache side-channel attacks in various
ways [32, 38, 39, 52, 56]. Recently, [4, 6, 13, 29, 48] have
discussed preloading sensitive data into the cache to eliminate
cache traces left by the victim’s data accesses. Furthermore,
Gruss et al. [17] propose Cloak, which utilizes Intel TSX to
preload and pin sensitive data and code in transactional memory
during execution. If the attacker evicts corresponding cache
lines, Intel TSX allows the victim process to be immediately
interrupted and capture the malicious behavior. Note that
Cloak can provide stronger cache defense compared to naive
preloading which cannot prevent attacker from interfering
between prefetch and genuine accesses. Cloak is also applied
to Intel SGX to mitigate cache side-channel attacks target-
ing enclave programs. Notwithstanding the defenses posing
a limit to the level of leakage through the cache status,
PRIME+RETOUCH demonstrates that attacker can still leak
information through the underlying eviction policy without
causing evictions of the victim’s cache lines.

C. Cache Replacement Policies

If entire cache lines of one set are filled, a next cache miss in
that set will evict one of its present cache lines in order to host
the newly fetched data. Cache replacement policy determines
which cache line to evict. In concept, the replacement algorithm
keeps track of certain metadata of the cache lines according
to the history of cache accesses, on which the selection of the
best cache way to evict is based.

LRU. The Least-Recently Used cache replacement policy is
based on the assumption that it is more likely for the processor
to use the more recently fetched or accessed data than the stale
ones. To preserve the temporal locality, the LRU algorithm
keeps track of the age of each cache line and chooses to evict the
least recently used (oldest) cache way upon cache misses. Due
to the expensive memory requirement and latency in storing
age information and updating LRU records, an approximation
of the LRU policy called Pseudo Least-Recently Used (PLRU)
is often used.

Tree-PLRU. The Tree-based Pseudo Least-Recently Used
policy (Tree-PLRU) [47] uses a binary tree structure as its

2

metadata to encode the Pseudo Least-Recently Used (PLRU)
relationship within a cache set. The cache lines in the same set
are divided recursively in binary to sub-groups until it reaches
2-way groups. As a result, the division produces a binary tree
(see Figure 1). Each leaf node of the binary tree represents the
physical location of a cache way (TAG). Each intermediate node
has a flag that indicates the less recently accessed sub-group
represented as a sub-tree in the binary tree. To find the PLRU
cache way that best approximates the LRU way, Tree-PLRU
starts from the root node, and traverses along the less recently
accessed sub-trees. The finally reached leaf node then contains
the best approximated PLRU cache way under Tree-PLRU. In
addition, when a cache line is accessed, all the flags on the
reaching path from the root node to the leaf node associated
with the accessed line are updated to lead away from the path,
making the cache way the most recently accessed (MRU).

MRU
(inserted node)

PLRU
(next eviction)

Flipped flags
after insertion

Virtual addr

0xCAFE1040

0xCAFE0040

0xCAFE2040

LRU

0xCAFE4040

0xCAFE3040

0xCAFE5040

0xCAFE6040

0xCAFE7040

1

0

2

4

3

5

6

7

Alias

0xCAFE4040

0xCAFE0040

0xCAFE2040

0xCAFE1040

0xCAFE6040

0xCAFE5040

0xCAFE3040

0xCAFE7040

Cache set (TAG)

Path to
the node

TPLRU metadata

True
LRU

0
4

2
6

1
5

3
7

1

2
LRU

MRU

0
4

2
6

1
5

3
7

0 4 2 6 1 5 3 7

(initial state)

(cache lines in the same associative set, W=8)

→ miss8

 → hit
4

accessing

8 4 2 6 1 5 3 7

0 4 2 6 1 5 3 7

0 →
evicted

Fig. 1: Tree-PLRU in action. It illustrates how the internal metadata
of Tree-PLRU changes on a cache miss and hit on a cache line of
the same associative set.

Tree-PLRU in action. Upon a cache hit or a cache miss, Tree-
PLRU updates its metadata that represents the Pseudo-LRU
ranks of cache lines per associate set. We define the PLRU rank
of a cache way as the placement of the cache way regarding
the eviction order determined by the specific PLRU policy. The
sooner a cache way can get evicted under the specific PLRU
policy, the higher placement in the PLRU eviction order the
cache way has and thus, the higher PLRU rank. In the case
of a cache miss (1 in Figure 1), Tree-PLRU evicts the PLRU
node (e.g., 0 in 1 reached by chasing the pointers from the
root node) and flips all the flags along the path to lead away
from the evicted node, indicating the node as the most recently
accessed one (i.e., no pointers now directing to the node). In
the case of a cache hit (2 in Figure 1), it simply flips all the
flags along the reaching path to lead away from the accessed
cache line, which similarly indicates it as the now most recently
accessed one. One significant side effect we leverage in our
attack is how the LRU status is approximated in Tree-PLRU
as PLRU ranks. By virtue of the approximation, the LRU entry
will not match the entry marked as the highest PLRU rank in
some circumstances. For example, in Figure 1- 2 , Tree-PLRU
considers 1 as the next eviction entry (PLRU) after 4 is
accessed due to the tree-based metatdata that approximates the
PLRU ranks of cache ways, although 0 is the true LRU entry.

D. Intel TSX

Intel Transactional Synchronization Extensions (TSX) im-
plements a hardware-based transactional memory that allows
multiple hardware threads to run critical sections concurrently
by detecting conflicts on shared data. When a transaction is
aborted due to a conflict, all monitored data will be discarded,
thereby restoring to the initial state (i.e., rolled back).

III. DEMYSTIFYING L1 EVICTION POLICY

In this section, we explain how we examine the details
of the undocumented L1 cache eviction policy of modern
Intel processors and Apple’s M1 processor. To understand the
underlying cache architecture, we use Intel TSX as a noise-free
monitor to capture specific L1 cache eviction events on Intel
processors. For the same purpose on the M1 processor. we
use the undisclosed Apple’s performance counter. Although
we provide systematic approaches to collect cache traces, for
recovering the policy from the trace, we refer to [2, 51].

In-order memory accesses. The internal states of an eviction
policy can highly depend on the order of cache accesses.
However, modern processors adopts out-of-order execution
and memory speculation. To retain the expected order of
cache accesses, we craft in-order memory operations and time
measurement primitives by carefully inserting memory barrier
instructions and using pointer chasing [53].

A. Intel Processor

Reverse engineering the cache eviction policy is not a new
problem in the x86 architecture [2, 10]. However, achieving
it without noise in user space is challenging. For example,
Briongos et al. [10] encounters false positives due to the
adoption of timing based measurements, while nanoBench [2]
leverages hardware Performance Monitoring Extension (PMU)
that requires root privilege to achieve accurate results, restricting
its scope of application. We devise a user-space noise-free
reverse engineering technique utilizing Intel TSX, and uncover
that the underlying eviction policy is Tree-PLRU. We used the
same environment setting described in §VI.

Different behaviors of TSX read-set and write-set.
Intel TSX, within a transactional region, tracks memory ad-
dresses written into as a write-set and memory addresses
read from as a read-set. To prevent conflicting accesses where
another logical processor either reads memory from the write-set
or writes to memory of either the read- or write-set, Intel TSX
monitors such events at different cache levels. When a cache
line mapped to an address in the write-set or the read-set is
evicted from the L1 data cache or the L3 cache, respectively,
it triggers TSX abort resulted from the conflicting access.

Algorithm for reversing the L1 cache with TSX.
The essence of TSX-assisted reversing is utilizing different
condition of conflicting access on the read-set and the write-set.
Regardless of memory write or read operations, the cache lines
are fetched to the L1 data cache. Nevertheless, a TSX abort will
be triggered only when a cache line in the write set is evicted
from the L1 cache. Note that an abort will not be triggered
when a cache line in the read-set is evicted from the L1 or
L2 cache. Therefore, we can reliably measure how many fresh
cache misses, thus evictions, are required to evict a specific

3

Algorithm 1: TSX-supported eviction policy reversing
Input: X[nWays], Y[nWays]: Addresses in set X and Y are mapped

to the same set, but X and Y are disjoint.
Output: evictSeq[nWays]: Num of required evictions per cache line

1 for target← 0 to nWays do
2 do
3 for numEvict← 1 to nWays+1 do
4 beginTSX
5 for i← 0 to target do
6 memRead(X[i])

7 memWrite(X[target])
8 for j ← target+ 1 to nWays do
9 memRead(X[j])

10 memRead(X[read_primed])
11 for k ← 0 to numEvict do
12 memRead(Y[k])

13 endTSX

14 while TSX abort
15 if TSX aborts then
16 evictSeq[target] = numEvict

cache line tracked by the write-set from the L1 data cache. Note
that this number of eviction represents the internal decisions
of the cache replacement policy. In each round of Algorithm 1,
we load the target - 1 number of the cache lines (Line 5-6)
to the read-set, the target cache line to the write-set (Line 7),
and the rest of the cache line to the read-set (Line 8-9). At
this stage, since the associative set contains all the data (from
set X) we loaded, an additional cache line accesses to the same
associative set will incur an eviction (Line 11-12). Then, we
count how many new cache lines (from set Y) can be loaded
until the target cache line is chosen for eviction by the underling
eviction policy. Note that any L1 data cache eviction from the
read-set would not cause the TSX to abort. Furthermore, to
understand how the underlying eviction policy is affected by
the L1 cache hit events, we enumerate different combinations
of read operations on the primed data (Line 10). Therefore,
we expose the eviction orders of the cache lines within the
same associative set resulting from all combinations of cache
hits and learn that the changing eviction order conforms to the
behavior of Tree-PLRU.

B. Apple M1 Processor

It is challenging to explore the microarchitectural behaviors
of the newly released Apple M1 processor, as its internal states
and interfaces are not previously studied. Nonetheless, we
successfully reveal that the M1 processor adopts the Tree-PLRU
eviction policy for the L1 data cache. To reach the obtained
results, we utilized the Apple’s hardware PMU to monitor its
L1 data cache events because the M1 processor is not equipped
with transactional memory. In detail, we utilize the fact that
L1 cache hit and miss events have different latency. We expect
that TSX-style reverse engineering (§III-A) is possible with
Transactional Memory Extension [21] deployed in ARMv9 [24].
We used the same environment setting described in §VII.

Reversing with the undocumented PMU. The first challenge
we faced in reversing the M1 architecture is the lack of a
publicly available interface as a measurement tool, such as
hardware PMUs including a high-resolution timer. Although
the M1 architecture expands the ARMv8, we found that the
M1 does not deploy the standard ARMv8 PMU [23] (i.e.,

reading and writing system registers of ARMv8 PMU halts
the system). Therefore, we reverse-engineered the interface
of the Apple’s proprietary PMU and related events. Although
no official document from Apple discloses such information,
we found that Apple’s XNU kernel partially utilizes their
proprietary PMU. Based on the analysis and experiment, we
found that the M1 processor can concurrently monitor at most
10 PMU events per core, and each PMU can track one of
the 255 undocumented events (0 to 254). We also empirically
found two undocumented PMU events: 0x2 that tracks the core
clock cycles (e.g., rdtsc as in x86) and 0xa3 that monitors the
L1 data cache miss event. Those two PMU events are enough
to uncover the replacement policy of the L1 data cache.

Cache hierarchies of M1. Information about cache hierarchies
such as set associativity, number of sets, and cache line size is
essential for reversing the replacement policy. Unfortunately,
to the best of our knowledge, there is no public documentation
specifying the M1 processor’s cache hierarchies. Therefore,
we for the first time retrieve such information by utilizing the
system registers CCSIDR_EL1 and CSSELR_EL1. As the M1
architecture adopts two different types of cores (Firestorm and
Icestorm), we collect two sets of cache hierarchies respectively.
All the detailed information is described in Table I.

CPU Type FireStorm IceStorm

L1 DCache L2 DCache L1 DCache L2 DCache

Number of Set 256 8192 128 2048
Set Associativity 8 12 8 16
Cache Line Size(Byte) 64 128 64 128

TABLE I: Information of data cache hierarchies in M1 processors

L1 data cache set mapping. To measure the L1 data cache
activities in a particular set, we should be able to manipulate the
addresses mapped to a particular set. For example, we need at
least 9 addresses mapped to a particular set as the L1 data cache
is 8-way set associative in both types of the cores. We found
that M1 employs different cache set mappings depending on
the core type. For all virtual address x, its L1 data cache set s is
determined by the following equations: s = (x mod 16384)/64
on Firestorm core and s = (x mod 8192)/64 on Icestorm.

L1 cache hit and miss latency. To measure the L1 hit latency,
we first prefetch one memory address with ldr instruction and
then measure the latency of loading the same entry once again.
If the entry has been prefetched before being accessed in the
measurement, it will always result in an L1 hit. Although we
have no information about the eviction policy yet, we can still
measure the L1 miss latency because we are aware that each
L1 data set consists of 8 cache lines (Table I). In detail, we
access 16 memory addresses mapped to a particular L1 data
set and measure the latency to access the first entry once more.
Note that the first 8 entries are evicted from L1 caches after the
following 8 accesses occur. Therefore, the accesses to the first
8 entries will not be served by the L1 data cache. As shown
in Figure 2, we can clearly distinguish L1 hits from L1 misses
in both types of the cores. We implement the reversing logic
as a kernel driver and launch measurements on a designated
processor using smp_call_function_single to eliminate the
noise introduced by context switching.

4

Fig. 2: L1 hit and miss latency for Icestorm and Firestorm core. The
measured latency includes the memory barrier instruction’s latency:
51 cycles and 56 cycles, respectively, on Icestorm and Firestorm core.
Therefore, on two different cores, the actual L1 hit latency is 2 cycles
and 4 cycles, and L1 miss latency is around 12 cycles and 16 cycles,
respectively. Note that each core runs at different clock frequency.

Reversing M1 eviction policy. To reverse engineer the eviction
policy of the L1 cache on the M1 platform, we follow the similar
reversing logic described in Algorithm 1. Based on the latency
difference measured in Figure 2, we can determine which cache
line has been evicted and recover the eviction policy from the
trace. Also, we utilize the 0xa3 PMU events together to monitor
L1 cache activities for better accuracy. Due to the lack of space,
implementation details are described in §A.

IV. PRIME+RETOUCH

PRIME+RETOUCH has three distinctive characteristics com-
pared with known cache side-channel attacks (see §II-B).

1 Stealthy. PRIME+RETOUCH does not incur eviction of the
victim’s prefetched data to leak the access patterns. Since
PRIME+RETOUCH only accesses the cache lines primed by
the attacker to manipulate eviction metadata (i.e., internal
states of Tree-PLRU), it does not interfere with the victim’s
execution or destruct cache state. This property is particularly
important because existing defenses against PRIME+PROBE
and FLUSH+RELOAD rely on preloading and locking the cache
sets [17] to prevent cache evictions.

2 Minimal synchronization. When an attack requires multiple
cache accesses, it is more challenging to synchronize those ac-
cesses with the victim’s access. Thus, incorrect synchronization
incurs noise and makes the attacks unreliable. Furthermore,
when a prefetch-based defense is deployed, especially for
PRIME+PROBE style attacks, the targeted windows tend to
be narrower because the attacker should evict the prefetched
entries before they are consumed. As a result, the attacker has
to average out the noise by repeatedly launching the procedure
a significant number of times [10, 14, 17], thus leaving a
detectable level of microarchitectural traces for detection-
based countermeasures [9, 55]. In contrast, PRIME+RETOUCH
requires only one synchronized memory access to the attacker’s
pre-primed cache lines, minimizing both noise from synchro-
nization efforts and microarchitectural traces left.

3 Leakage via non-shared memory. Attacks such as
FLUSH+RELOAD and RELOAD+REFRESH [10] require shared
memory between the attacker and the victim to introduce
changes on cache status, such as flushing the victim’s cache line.
However, the requirement highly limits the range of application
scenarios. In contrast, PRIME+RETOUCH does not require any
shared memory resource to leak the victim’s access pattern.

Since the PRIME+RETOUCH attacker has complete knowledge
about the shared eviction policy, the attacker can precisely
reveal access patterns of a target cache line through the eviction
metadata instead of the cache itself.

A. Attack Model

PRIME+RETOUCH is a general attack applicable to any
architecture meeting the below assumptions. Note that further
details will be described in §VI, §VII based on the target
architecture. Regarding the execution environment, we assume
that the L1 data cache is shared between attacker and victim.
We assume that the victim process prefetches data before
accessing to conceal the access pattern. We also assume that
cache evictions of sensitive data are not allowed. Considering
the attacker’s capability, we assume that the attacker can replay
the security-sensitive code unlimited times without introducing
unexpected interruptions to the victim process. The attacker
is not expected to have any shared memory with the victim.
Lastly, we assume that the attacker can freely allocate virtual
memory to pick addresses that are mapped to desired L1 cache
sets.

B. Leaky Tree-PLRU

The Tree-PLRU cache replacement policy aims to mimic
a true LRU policy by using a tree-based data structure, as
explained in §II-C. One of the most distinct properties of Tree-
PLRU is that the eviction metadata used to decide the eviction
order is encoded as a binary tree structure when entries are
placed into the cache. Therefore, the exact eviction order for
LRU is not accurately tracked and approximated by sub-trees
(Pseudo-LRU). In detail, one cache way is grouped with other
cache ways by sub-trees represented in the eviction metadata,
and the PLRU rank of a cache line (i.e., eviction order) can be
affected by where an access to or an eviction of cache lines
in the same sets occurs in the tree structure. We found that
such a property can be carefully manipulated by an attacker
to produce eviction metadata that leak the cache activities of
the victim without causing evictions. We now explain how this
can be achieved.

Indistinguishable back-to-back accesses. Consecutive ac-
cesses to one cache line back-to-back are observed as single
memory access occurring under Tree-PLRU since the Tree-
PLRU approximates the order of accesses as a binary tree. As
we recall from §II-C, when a cache line is accessed, all the
flags on the reaching path from the root node to the associated
leaf node are updated to lead away from the path, making the
cache line the most recently accessed (MRU). However, if the
cache line is accessed again back-to-back, the corresponding
flags will then remain unchanged, as they are already updated
and indicating the correct less recently accessed sub-trees. As
a result, the fact that one cache line has been accessed multiple
times cannot be revealed directly from the final tree state if the
accesses occur back-to-back. In the case of PRIME+RETOUCH,
since a prefetch operation essentially accesses the prefetched
data, we cannot discover a back-to-back victim access to the
prefetched data directly from the final tree state either.

Distinguish victim’s access from prefetch operation by
retouching. To distinguish back-to-back accesses to the same
cache line solely from final tree states, the attacker should be

5

V 4 2 6 1 5 3 7

4

V 4 2 6 1 5 3 7

4

V 4 2 6 1 5 8 7

V 4 8 6 1 5 3 7

1 5 1

2 5 2

3

2

8

8

accessing
V

no access

→ hit
MRU Node

Flipped flags after
touching MRU node

prime retouch
(PLRU change)

evict
measure

prefetch V Vpossible access

Attacker

Victim
4 5

Time line

access 3

V 4 2 6 1 5 3 7

evict

access

accessing 3
miss!

accessing 3
hit!

2

V 4 2 6 1 5 3 7

1

0 4 2 6 1 5 3 7

evict
31 2

0 7

Fig. 3: An overview of PRIME+RETOUCH against the L1 cache with the Tree-PLRU policy. Changes on Tree-PLRU are demonstrated following
the timeline. Depending on the presence of the victim’s access following the prefetching, two different PLRU cache ways will be produced.

able to map one access to exactly one time of observable tree
state change. Therefore, by checking whether an additional
change in the tree state has occurred, the attacker can discover
the victim’s access following the prefetch. We define an
observable tree state change as a change of the node indicating
the PLRU cache way (i.e., next eviction entry). Note that a
change of the PLRU cache way is observed only when the
flag of the root node is flipped. In Figure 3, attacker primes all
cache lines of one set (1), and waits until the victim prefetches
V (2). To discover the victim’s access following the prefetch,
attacker retouches the PLRU cache way (1). Consequently, it
flips the corresponding flags, including the root node flag, and
produce a new PLRU node (2), causing the root node flag to
direct toward the prefetched entry (3). If a subsequent victim
access to the prefetched entry occurs (4 - 1), the root node
flag will be flipped again to lead away from the prefetched
entry, announcing a new PLRU cache way (3). In contrast, 2
remains as a PLRU cache way when there is no victim access
after preloading (4 - 2). If the attacker had not retouched the
PLRU cache way, both 4 - 1 and 4 - 2 would have produced
the identical PLRU tree, which prevents discovering the victim’s
access following the prefetch.

Probe the latest PLRU cache way and match with cache
activities. When another miss event is introduced to the set,
PLRU cache way will be evicted and allow a new entry to
be cached. However, note that different cache ways will be
evicted depending on which entry in the set is the PLRU entry,
which is determined by the possible victim access following
the retouch. We produce a cache miss by accessing 8 , a new
cache line associated with the current set, to evict the current
PLRU cache line in both cases. Note that the evicted cache
line belongs to attacker’s primed set and does not affect the
victim’s cache way. Consequently, different entries will reside
in the set (2 remain in 5 - 1 , and 3 remain in 5 - 2). We
can discover whether there were victim’s access following the
prefetch by measuring the access latency of 3 . A cache miss
latency indicates that 3 was indeed evicted and confirms that
the victim has accessed the prefetched entry while a L1 cache
hit latency indicates that 2 has been evicted instead, indicating
that there was no further access from victim.

C. Synchronization in PRIME+RETOUCH

In the previous section §IV-B, we describe the attack only
when the attacker’s retouch happens after the victim’s prefetch
(A and B in Table II). However, as shown in Table II, five
different operation sequences can happen depending on the
order of the victim’s and attacker’s memory accesses during

A P → R → A B P → R C P → A → R D R → P → A E R → P

Retouch 1 PLRU:3 PLRU:2 PLRU:2 PLRU:3 PLRU:3
PLRU Aware PLRU:3 PLRU:2 PLRU:2 PLRU:2 PLRU:2

TABLE II: PLRU cache ways produced by all five possible opera-
tion sequences. After applying PLRU Aware RETOUCH (§V-C, the
sequence A can be distinguished among all five sequences.

PRIME+RETOUCH attack (i.e., synchronization). In this section,
we will demonstrate the challenges imposed by synchronization
in PRIME+RETOUCH.

Retouching 1 can produce false positive results of distin-
guished victim accesses. If the attacker cannot adequately
achieve precise synchronizations, unwanted operation sequences
are produced and result in noisy Tree-PLRU metadata, posing
false positives. Particularly, when an attacker’s retouch occurs
prior to the victim’s prefetch, two extra operation sequences
D and E (we call them unsynchronized sequences) can occur.

DRetouchAttacker → PrefetchV ictim → AccessV ictim

ERetouchAttacker → PrefetchV ictim

As shown in Figure 4, although synchronized sequence A and
unsynchronized sequence E represent opposite victim cache
activities (access vs. no access), they result in the same Tree-
PLRU eviction metadata. Note that unsynchronized sequence
D results in the same Tree-PLRU metadata as E because the
following victim’s access occurs immediately after the prefetch.
In fact, the mixture of all five possible sequences makes the
previously unique PLRU cache way produced by the desired
sequence A completely indistinguishable, as shown in Table II.
Therefore, without techniques to differentiate such conflicting
cases, final tree states resulting from unsynchronized retouch
cannot render useful information about victim cache activities.

Synchronization can eliminate false positives. The root
cause of false positives is unsynchronized retouching before
the victim’s prefetching. Therefore, if the attacker is able
to successfully retouch 1 after the victim entry has been
prefetched, only three possible operation sequences can occur
and eliminate the false positives:

APrefetchV ictim → RetouchAttacker → AccessV ictim

BPrefetchV ictim → RetouchAttacker

C PrefetchV ictim → AccessV ictim → RetouchAttacker

Each sequence results in different tree states following
Tree-PLRU policy, where the PLRU cache way resulting from
sequence A is different from the other two (B , C) Since
we know the sequence A produces a unique PLRU cache
way among the three, we can probe whether sequence A has
occurred by forcing a cache miss and check whether indeed
the unique PLRU cache line got evicted.

6

0 4 2 6 1 5 3 7

V 4 2 6 1 5 3 7

Prefetch V3

V 4 2 6 1 5 3 7

Prefetch V2

V 4 2 6 1 5 3 7

3 Retouch 1

Retouch 12

V 4 2 6 1 5 3 7 V 4 2 6 1 5 3 7

0 4 2 6 1 5 3 70 4 2 6 1 5 3 7

Prime (0-7)1 Prime (0-7)1

4 Access V (PLRU:3) No more access (PLRU:3)

Seq. A Seq. E

Fig. 4: When RETOUCH 1 is applied, the identical Tree-PLRU
metadata is produced as a result of two different operation sequences:
synchronized (left) and unsynchronized (right).

V. PSEUDO SYNCHRONIZED PRIME+RETOUCH

In this section, we introduce the pseudo synchronized
PRIME+RETOUCH attack, which does not require precise
synchronization but still achieves the same leakage by purely
relying on Tree-PLRU metadata. We first look at characteristics
of Tree-PLRU metadata that create false positives in distin-
guishing the victim access from prefetch when assistance for
precise synchronization is not available. We then propose a
new technique called PLRU Aware RETOUCH, which cleverly
solves the challenge introduced by unsynchronized RETOUCH
and shows that when applied, the attacker can achieve the same
leakage as with precise synchronization.

A. Limited Precise Synchronization Techniques

Various synchronization techniques to timely introduce an
attacker’s interference have been discussed under various threat
models [14, 49]. Nonetheless, it is not always the case that
such assistance is available to achieve precise synchronization.

Hardware transactions. PRIME+ABORT [14] allows the
attacker to accurately observe a victim’s cache access using TSX
abort. Intuitively, a PRIME+RETOUCH attacker might also rely
on such a technique to precisely synchronize retouch with the
victim’s prefetch. Unfortunately, TSX-assisted synchronization
could not work in our threat model. From the latest stepping
R0 [26, 27], Intel has deployed hardware changes as mitigations
against microarchitectural side channels [26, 34, 37, 46, 50].
This mitigation prevents a hyperthreaded core from handling
TSX transactions while its sibling core runs an SGX enclave
process. Consequently, even if the co-located attacker initiates
a TSX transaction before the victim executes, the transaction

0 4 2 6 1 5 3 70 4 2 6 1 5 3 7

0 4 2 6 1 5 3 7V 4 2 6 1 5 3 7

Prefetch V2 Retouch 02

Prefetch V33 Retouch 0

V 4 2 6 0 5 3 7 0 4 2 6 V 5 3 7

V 4 2 6 0 5 3 7 0 4 2 6 V 5 3 7

Prime (0-7)1 Prime (0-7)1

No more access (PLRU:2)4 Access V (PLRU:3)

Seq. A Seq. E

Fig. 5: When PLRU Aware RETOUCH (§V-C) is applied to the case
in Figure 4, by probing the PLRU cache way represented in the
final tree states, the attacker is able to distinguish the two operation
sequences.

will immediately abort upon the victim’s entering the enclave
without capturing any cache activity. Furthermore, TSX is
disabled by default in modern operating system; and user-level
attacker in PRIME+RETOUCH is prohibited from utilizing it.

B. Unsynchronized RETOUCH

The attacker’s dilemma. Here comes the attacker’s dilemma:
The PLRU cache way produced after the victim’s prefetch and
attacker’s retouch operation, should belong to the same sub-tree
of the victim’s cache line (root-to-left or root-to-right sub-tree);
however, different orders of the two operations make the PLRU
cache way to be located in different sub-tree. The fact that the
PLRU cache way resides in the same sub-tree as the victim’s
cache line guarantees that the victim’s access following the
prefetch operation to be traced in the Tree-PLRU structure.
Therefore, at the time of the two operations finished, if the
victim’s entry and PLRU cache way are not located in the same
sub-tree, PRIME+RETOUCH can misinterpret the Tree-PLRU
structure.

As depicted on the right side of Figure 4, the attacker
unexpectedly retouches 1 when it is not synchronized with the
victim’s prefetch operation (sequence E). The accessed cache
line does not reside in the sub-tree that contains the PLRU cache
way (i.e., root-to-left sub-tree), so the PLRU cache way under
Tree-PLRU does not change. However, the PLRU ranks of
other cache lines within the opposite sub-tree (i.e., root-to-right
sub-tree) has been changed (e.g., promoting sub-tree containing
3 and demoting sub-tree containing 1). Consequently, the
effect on the eviction candidate is preserved and postponed until
the next root node flip, i.e., the next access to the less recently

7

accessed sub-tree. As a result of the following victim’s prefetch
operation (3), PLRU rank changes captured in the Tree-PLRU
structure, which was incurred by 2 , makes the 3 as the PLRU
cache way. On the other hand, the synchronized (left) attacker
retouches 1 when it is in the PLRU cache line after prefetch
(2), causing 3 to have the highest plru rank in the sub-tree (3).
As a result, both the following victim access when synchronized
and the victim prefetch when unsynchronized (3) flip the root
flag and produce 3 as the next PLRU cache way. To solve the
dilemma under unsynchronized settings, retouch needs to do
more than just mimic an access.

C. PLRU Aware RETOUCH

Recall that the root cause of the attacker’s dilemma is the
nondeterministic location of the PLRU cache way represented in
the Tree-PLRU structure when not synchronized. The attacker
wishes to always retouch the PLRU cache line to cause an
immediate observable tree state change, but might unexpectedly
retouch a cache way with low PLRU rank (high MRU rank)
prior to victim prefetch and cause an indistinguishable final
tree state. Our solution is called PLRU Aware RETOUCH, a
special type of RETOUCH that always accesses the PLRU cache
line. In order to always retouch the PLRU cache way, the
attacker should either evict the cache line in the PLRU cache
way, or directly access the PLRU cache way. PLRU Aware
RETOUCH solves the dilemma by always retouching a cache
line that satisfied both conditions, the resulting PLRU cache
line immediately after the attacker prime. Note that the attacker
knows the resulted PLRU cache line, as he is aware of the
eviction policy. The reason behind is that retouching such a
cache line will either bring back the cache line to the PLRU
cache way after being evicted by victim prefetch by a cache
miss caused by the following attacker retouch (left side in
Figure 5), or access the PLRU cache way itself before victim
prefetch (right side in Figure 5). Equivalently, the attacker then
is always retouching the PLRU cache way, no matter which
side the sub-tree resides on in the Tree-PLRU structure.

An example where the attacker applies PLRU Aware
RETOUCH to the case in Figure 4 is shown in Figure 5. As
we can see, the attacker chooses to retouch 0 instead of 1 as
in Figure 4. When the synchronized sequence A takes place
on the left side, 0 is first evicted by the victim prefetch (2)
as the resulting PLRU cache way immediately after attacker
prime (1), and then brought back to the PLRU cache way by
the attacker retouch as a cache miss (3). On the other hand,
when unsynchronized sequence E takes place on the right side,
0 is accessed by the attacker retouch (2) as the resulting
PLRU cache way immediately after attacker prime (1). In
both cases, the attacker successfully retouches the PLRU cache
way. As a result, sequences A and E are nicely distinguished
by examining the PLRU cache way in the final tree states.

Reduction to synchronized PRIME+RETOUCH. The insight
brought by PLRU Aware RETOUCH is that prefetch is es-
sentially a retouch with an eviction of the PLRU cache way
in the perspective of the Tree-PLRU structure. Essentially,
PLRU Aware RETOUCH, as demonstrated in Figure 5, re-
duces unsynchronized operation sequence E to synchronized
sequence B . Similarly, unsynchronized operation sequence
D is reduced to unsynchronized operation sequence A .
Consequently, the final tree states can be analyzed in the same

way as the synchronized case §IV-B. Furthermore, the reduc-
tion from unsynchronized PRIME+RETOUCH to synchronized
PRIME+RETOUCH offloads the synchronization analysis to a
post-transaction phase and therefore eliminates any runtime
checking of victim prefetch that can introduce extra noise to
the attacker.

D. A poor attacker’s approach with delay reduction

Challenge: if retouching occurs too late, attacker can still
miss the victim’s access to the prefetched data. This is
because the PLRU cache way resulting from sequences B and
C are the same as shown in Table II, so that the attacker
can miss a genuine victim access if the sequence C has
occurred, producing false negatives. Note that the result is not
dependent on retouching method. Furthermore, this challenge
can be imposed even when retouching is synchronized after
the victim’s prefetch. Even the synchronization support such
as PRIME+ABORT only guarantee that the retouching happens
after the victim’s prefetching not before the victim access if
presents. Further analysis is thus required to capture missed
accesses to avoid false negatives.

A Poor man’s algorithm. The intuition of the poor man’s
algorithm is to locate the attacker’s retouching as closely
as possible to the victim’s prefetching so that the victim’s
access is unlikely to occur in between. The attacker first
sets a long delay after the initial prime so that the attacker’s
prefetching is guaranteed to occur after the victim’s access
if there has been one. Then, the attacker keeps relaunching
the PRIME+RETOUCH attack while reducing the delay in a
fine-grained manner until the unique PLRU entry of sequence
A is captured, which confirms a victim access, or the delay
reaches zero, indicating sequence B has occurred instead. To
successfully achieve this, two prerequisites are required. First,
the poor man’s retouching should always be synchronized after
the victim’s prefetch. Second, the delay reduction should be
fine-grained enough to make retouching intervene the prefetch
and possible genuine access so that it can reveal the victim’s
access hidden by the false negative.

Synchronization recovery for poor man’s algorithm. Al-
though PLRU Aware RETOUCH eliminates false positives, it
does not guarantee that the attacker’s retouch always occurs
after the victim’s prefetch, a prerequisite for poor man’s
algorithm in §V-D. However, as the attacker does not have
any timing information or convenient tools such as Intel TSX,
extra analysis is needed to tell the order of occurrence. After
the desired order of occurrence can be always achieved, we
can apply the poor man’s algorithm to further eliminate false
negatives. In short, we need to differentiate sequence C from
D (we omit sequence E as its behavior replicates D due to
back-to-back access to V):

C PrefetchV ictim → AccessV ictim → RetouchAttacker

DRetouchAttacker → PrefetchV ictim → AccessV ictim

(ERetouchAttacker → PrefetchV ictim)
More specifically, if we can distinguish the two sequences we
can recover the synchronization information about the victim’s
prefetch and the attacker’s retouch. Although the final state
of the tree remains after applying PLRU Aware RETOUCH, it
is worth noting that depending on the time when retouching
occurs, the victim cache line ends up in the opposite group

8

V 4 8 6 0 5 3 7

Retouch 0 (PLRU:5)6

Retouch 0 (PLRU:4)6Access 8 (Evict 2)4

Access 8 (Evict 2)4

V 4 8 6 0 5 3 7

5 Measure (Access 3)

5 Measure (Access 3)

V 4 8 6 0 5 3 7

2 3
V 4 2 6 0 5 3 7

Prefetch Retouch 0 Access 1

Retouch 0 Prefetch Access

0 4 2 6 V 5 3 7

2 31
0 4 8 6 V 5 3 7 0 4 8 6 V 5 3 7 0 4 8 6 V 5 3 7

S
e
q
.
C

S
e
q
.

,
D

E

Fig. 6: Although the same PLRU cache ways are produced after applying PLRU Aware RETOUCH, victim entries V in sequence C and
sequence D end up in opposite sub-trees in the Tree-PLRU metadata. By retouching an attacker’s entry in the opposite group, e.g., 0 , after
probing the PLRU cache way (2), different new PLRU cache ways are produced. Consequently, the two sequences are differentiated by probing
the new PLRU cache ways again (4 vs. 5).

of the Tree-PLRU structure, Figure 6, after probing the PLRU
cache way (5). Namely, the root flag directs towards the victim
entry under sequence C and leads away from the victim entry
under sequence D . The same situation applies to the Eviction
Aware RETOUCH-ed cache line symmetrically. This fun fact can
later be utilized by the attacker to recover the occurrence order
of the victim’s prefetch and the attacker’s retouch, avoiding the
noise brought by probing the eviction metadata during runtime
for such information.

As shown in Figure 6, after probing the PLRU cache way
(4 and 5) following the outcomes in Figure 5, victim entry V
resides in opposite Tree-PLRU groups (5) with the same new
PLRU cache way (4). By retouching the previously Eviction
Aware RETOUCH-ed cache line, 0 in this case, sequence C
will not cause the next PLRU cache way (PLRU:4) to change, as
the root flag leads away from 0 , while sequence D alters the
next PLRU cache way (PLRU:5) as the root flag directs towards
0 . We then can differentiate the two sequences by probing the
eviction candidate again, and recover the occurrence order.

VI. PRIME+RETOUCH ON X86

Responsibility disclosure. We have reported
PRIME+RETOUCH to Intel and received an acknowledgment.

Execution environment. Our evaluation platform is equipped
with an Intel Core i9-9900K (Coffee Lake) CPU @ 3.60 GHz,
running Linux Ubuntu 20.04.1 LTS with a 5.4.0-rc8 kernel. The
size of the L1 data cache is 32KiB per core, and it consists of
64 cache sets with eight cache lines per set (8-Way). The size
of cache line is 64Bytes. The machine uses microcode version
0xd6 and adopts R0 stepping (i.e., 13). Therefore, we assume
that defense described in §V-A is available, and the attacker
cannot utilize TSX to assist synchronization. We assume that
the hyperthreading is enabled and the attacker can co-locate a
spy process concurrently with the victim process so that the
L1 cache is shared. Last, we assume that attacker can utilize
rdtsc to capture the L1 miss event.

Prefetching and locking defense mechanisms deployed.
For data preloading to L1 cache, we utilize write operations
inside a TSX transaction. Note that write operation is required
because of implementation of [17], not because of intentionally

launching the PRIME+RETOUCH on a weak assumption. The
victim accesses preloaded entries as he wishes using read
operations. We assume that security-critical code and data can
fit and are properly placed inside the TSX protection regions.

PRIME+RETOUCH in SGX For SGX environment, we
exclude specific cores from scheduling by applying the
isolcpus with noHZ boot parameter of the Linux kernel and
use rdpmc instruction to capture L1 cache miss events to reduce
noise. If there is no mention about SGX explicitly, all the
experiment results are retrieved in a non-SGX environment.

A. Baseline Evaluation of PRIME+RETOUCH

To effectively demonstrate the basic capability of
PRIME+RETOUCH, we implemented a simple version of [17].
The victim process prefetches 64 data blocks, each mapped
to a 64 different cache set inside a TSX transaction (L1 data
cache consists of 64 sets in x86). We locate the victim’s access
operation after the prefetch based on the experiment settings.

PLRU Aware RETOUCH can effectively distinguish all
operation sequences We demonstrate that PRIME+RETOUCH
can accurately distinguish victim’s accesses by leveraging
PLRU Aware RETOUCH in Figure 7. In addition, we reveal
the synchronization information retrieved from the Tree PLRU
that allows the attacker to estimate when a victim’s further
access occurs if it exists. In this experiment, we launched
PRIME+RETOUCH 100 times per delay from 700 to 0 cmc
range with 2 cmc instructions as cycle reduction granularity.
Also, we iterated the identical experiment for two cases: when
the victim’s access follows the preloading (above graph) and
when no access follows the preloading (below graph). For each
experiment, PRIME+RETOUCH successfully distinguished all
three cases: (1) retouching in between prefetch and access
(Synchronized, access), (2) retouching before prefetch (Unsyn-
chronized), and (3) retouching after prefetch (Synchronized,
no access). As shown in the upper graph, there is a distictive
increases on the Synchronized, access case around 550 to 330
cmc delays. This indicates that victim’s genuine access occurs
in that interval most of the time. However, the lower graph
couldn’t capture any drastic frequency changes in the same
case (Red), which means no victim access was initiated after

9

Fig. 7: The only difference in these two graphs is the presence of
victim’s access after the prefetch.

the preloadindg. Also, an intersection of two different lines
at around 300 cmc in both graph demonstrates that the time
of victim’s prefetch operation can also be pinpointed with
PRIME+RETOUCH.

Poor man’s algorithm reliably make RETOUCH to be
located between victim’s prefetch and access When the
victim’s access occurs after preloading, timing delay between
the preloading and actual access can determine the accuracy
of PRIME+RETOUCH. It is easier to capture the access when
the victim touches the entry prefetched earlier because there is
sufficient timing delay that attacker can intervene for RETOUCH.
For address mapped to cache set N (0 ≤ N ≤ 63), it has around
(63 − N) ∗ prefetch_latency delay between the preloading
and the further access. To further evaluate the reliability of
PRIME+RETOUCH, we launched PRIME+RETOUCH against
five different cache sets that have various timing intervals
between the prefetch and the following access. Our result shown
in Figure 8 proves that the poor man’s algorithm described
in §V-D reliably eliminates false negatives and accurately
identifies the victim access. Although the signal telling presence
of genuine accesses is getting weaker, as the time interval
between the prefetch and the access decreases, it is enough to
distinguish the victim accesses from the noise.

B. Attacking AES T-Table

Although appropriate countermeasures [20, 31, 35, 44]
have closed most of the cache side-channels presented in AES
implementations, still the T-Table implementation of AES is
frequently used to explore different characteristics of new side-
channel attacks compared to the existing approaches [10, 17–
19, 28]. Therefore, we demonstrate the effectiveness and
stealthiness of PRIME+RETOUCH compared to PRIME+PROBE
by attacking T-Table based AES encryption, both in regu-
lar environments and in Intel SGX enclaves. The T-Table
implementation transforms AES operations (i.e., SubBytes,
ShiftRows, and MixColumns) in one round of encryption
into 16 memory lookups to 4 different T-Tables. The T-Table
accesses in the first round of encryption are stated by the
equation Tj [pi ⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16.
Therefore, if the attacker can infer the values of pi ⊕ ki, the
indexes to T-Tables, they can then narrow down the possible
key-bytes (ki) in case the plaintext (pi) is known [7, 42, 43].

AES settings. Our experiment assumes the known-plaintext
attack scenario and targets the AES implementation in OpenSSL.
Each T-Table consists of 256 entries of 4bytes (1KB of each)

0100200300400500600700
0
20
40
60
80

100

Number of cmc instructions

N
um

be
r

of
m

on
ito

re
d

ac
ce

ss

Set 10
Set 30
Set 50
Set 60
Set 63

Fig. 8: Reliable false negative reduction achieved by poor man’s
algorithm. 1 cmc instruction is set as the granularity of delay reduction.
The initial delay has been set as 700 cmc instructions, and we iterated
100 times per delay until it reaches 0 cmc delay.

and maps to 16 different sequential sets of L1 cache. The first
T-Table, Te0 is always mapped to the page-aligned addresses in
our implementation, which map to set 0 to 15 of the L1 cache.
Other T-Tables are mapped to the subsequent L1 data cache
sets (16 to 63). We arranged the plaintext bytes to make the
AES encryption access the cache line equal to p0 / 0x10. The
plaintext value shown in the Figure 9 indicates the first byte
of plaintext (p0), and the random values are assigned to the left
15 bytes of plaintext (p1−15). Also, we generate a 128-bit AES
key with zero-filled user key data. Note that this experiment
setting is general and adopted in previous researches [17–19].

Evaluation methods. We launched around 300,000 encryptions
asynchronously and measured the victim’s access made on the
first T-Table mapped to the L1 cache set 0 to 15. For the
prefetch-based defense, we first preloaded the entire four T-
Tables to the Intel TSX write set and performed ten rounds
of AES T-Table encryptions in a single TSX transaction. To
bring the T-Table entries into a write set, we changed the
T-Tables to be writable and introduced a minimum of 64 write
operations, each of which strides cache line size. We measured
the average time to preload 64 memory entries with write
operations and organized the same amount of delay composed
of cmc instructions. As a result, we could make the RETOUCH
operation intervene between the preloading and actual AES
encryptions. Also, we put additional random delays of less than
300 cmc to make the measurement operations initiate after the
first round of AES encryption. The identical PRIME+RETOUCH
attack was also conducted in Intel SGX enclaves with the
prefetch-based defense applied.

Evaluation analysis. As shown in Figure 9, without prefetch-
based mitigations, PRIME+PROBE attack is sufficient to pre-
cisely leak the entire T-Table access patterns. However, when
preload operations load the entire T-Table to the L1 cache
sets before the actual AES encryption, PRIME+PROBE can no
longer distinguish real access patterns. The leakage captured
by PRIME+PROBE under the prefetch-based defense shows
as if the victim process accessed entire T-Tables during
the AES encryption operation. However, we can accurately
distinguish the actual T-Table accesses with PRIME+RETOUCH
even when prefetch-based defenses are applied, both in reg-
ular environments and in Intel SGX enclaves. Note that the
PRIME+PROBE without prefetch and PRIME+RETOUCH with
prefetch have a similar result, proving that PRIME+RETOUCH
is as effective as traditional cache side-channel attacks in
regular environments as well as in Intel SGX enclaves. In
both attacks, we can clearly see the diagonal cache access
traces. Also, 40% to 60% of the victim’s accesses are captured

10

Fig. 9: Color matrix showing cache hits on AES T-Table encryption.
Darker means more L1 cache hits. P+P indiciates PRIME+PROBE. We
conducted four different experiments on the same AES implementation.
The first implementation was conducted with PRIME+PROBE without
the prefetch-based defense applied. The other experiments were
performed with both PRIME+PROBE and PRIME+RETOUCH, with
prefetch-based mitigations applied.

for the other cache lines because we randomize the p1−15. This
indicates that PRIME+RETOUCH is accurate enough to capture
actual access patterns even under the prefetch-based mitigation,
which is not possible with eviction-based side-channel attacks.
Another advantage of PRIME+RETOUCH is stealthiness. we
observe that only 2.169% of the executions incur TSX faults
while launching PRIME+RETOUCH. Among all TSX faults,
10% were due to cache misses (i.e., 0.2% of all executions)
while the rest were caused by other TSX faulting conditions,
leaving minimal attack traces and making the attack hardly
detectable. This indicates that most of the TSX faults were
caused by running AES encryption in one transaction and
irrelevant to the attack with PRIME+RETOUCH. To verify it,
we launched the same AES implementation without involving
the PRIME+RETOUCH attack, and observed again that around
2% of the executions incurred TSX faults. In contrast, when we
launched the traditional PRIME+PROBE attack against the same
AES implementation protected by the prefetch-based defense,
93.445% of the executions triggered TSX faults.

VII. PRIME+RETOUCH AGAINST M1

Execution environment. We used the Apple Mac Mini with
the M1 CPU consisting of four performance cores (Firestorm)
and four efficiency cores (Icestorm). Each Firestorm core has
128KB of L1 data cache; and each Icestorm core has 64KB of
L1 data cache. The machine is equipped with 16GiB of memory
and runs a custom build Ubuntu 5.11.0-rc4+. We assume that
the victim adopts naive prefetching without locking because M1
has no support for transactional memory. However, we assume
that the victim’s entry should not be evicted while launching
the PRIME+RETOUCH. Also, we assume that the victim and
attacker processes run under time-sliced sharing setting such
as pthread or user-level threading. Last, we assume that the
attacker has no root privilege.

A. Challenge of PRIME+RETOUCH on M1

To determine whether the victim has accessed the prefetched
data, the attacker should be able to utilize PMU or high resolu-
tion timer as L1 cache activity monitor. However, unprivileged
processes (running at EL0) are not authorized to use those
measurement tools by default on the M1 platform.

Interface of ARM system counter is hidden. ARMv8
architecture employs a system counter [22] which provides a
fixed frequency incrementing system count giving an equivalent
view of the passage of time. Fortunately, the system timer is ac-
cessible to unprivileged users through the ARM-recommended
register interface, CNTVCT_EL0. However, we found that reading
the system counter using this interface raises an illegal instruc-
tion fault on the M1 platform. Nonetheless, we could discover
that an undocumented system register s3_4_c15_c10_6 is used
as an alias of CNTVCT_EL0. To locate this unknown interface, we
cleverly leveraged Apple’s Rosetta2 [5] which translates x86
instructions to the ARM64 counterparts. Because x86 provides
a user-accessible system timer through rdtsc instruction, we
made Rosetta2 translate the x86 binary containing rdtsc
instruction and disassembled the translated ARM64 binary.
As a consequence, we can ascertain that the s3_4_c15_c10_6
is utilized to access system counter at EL0.

Fig. 10: Latency of a ldr measured with the coarse-grained system
timer. The measurement iterated 20000 times for L1 hit and L1 miss
respectively. 0 cycle indicates that the latency of load operation is too
small to be measured with the system counter.

System counter is too coarse-grained to differentiate
between L1 hit and miss events. In §III-B, we confirmed
that M1 architecture exhibits a clear distinction between the
L1 hit and miss latency. The latency differences are around
10 and 12 core clock cycles on Icestorm and Firestorm,
respectively Figure 2. However, it is known that Firestorm
core runs at 3.2GHz, but the system counter increases with a
frequency in the range of 1MHz to 50MHz according to [22].
Therefore, the two events cannot be reliably distinguished
due to the coarse granularity of the system timer. To validate
the claim, we measured the elapsed time for accessing one
memory address using the system timer. Because we have full
knowledge about the eviction policy of L1 data cache, we can
easily produce L1 hit and miss conditions on the measurement.
As shown in Figure 10, there is no clear distinction in between
the two events. When load operation finishes at 1 system clock
cycle, it can be either L1 hit event or L1 miss event with
45.57% and 54.42% chance, respectively. For Firestorm, it was
45.23% and 54.76%. Note that the similar ambiguity is also
present in the 0 cycle case in both cores. In summary, the
latency difference between the L1 hit and miss event is too
negligible to be distinguished with the coarse-grained system
counter. Therefore, we need another approach to infer victim’s
access in PRIME+RETOUCH under M1.

11

V 4 2 6 0 5 3 7

Access 1 (L1 Miss)1

V 4 2 6 0 5 1 7

Access 7 (L1 Hit)2 Access 7 (L1 Hit)2

V 4 2 6 0 5 1 7V 4 2 6 0 5 1 7

Access 5 (L1 Hit)3

V 4 2 6 0 5 1 7

Access 6 (L1 Hit)4

V 4 2 6 0 5 1 7

Access 3 (L1 Miss)5

V 4 2 6 0 5 3 7V 4 2 6 0 5 3 7 V 4 2 6 0 5 3 7V 4 2 6 0 5 3 7

Access 5 (L1 Hit)7

V 4 2 6 0 5 3 7

Access 7 (L1 Hit)6 Access 6 (L1 Hit)8

V 4 2 6 0 5 3 7

Access 1 (L1 Miss)9

V 4 2 6 0 5 1 7

V 4 2 6 0 5 3 7 V 4 1 6 0 5 3 7

Access 1 (L1 Miss)1 Access 7 (L1 Hit)2
4 1 6 0 5 3 7V 4 1 6 5 3 7

Access 5 (L1 Hit)3
V 4 1 6 0 5 3 7

Access 6 (L1 Hit)4
V 4 1 6 0 5 3 7

Access 5 (L1 Hit)3
4 1 6 5 3 7

Access 3 (L1 Hit)5
V 4 1 6 0 5 3 74 1 6 5 3 7

Access 7 (L1 Hit)6
0 4 1 6 V 5 3 70 4 1 6 V 5 3 7

Access 5 (L1 Hit)7
0 4 1 6 V 5 3 7

Access 6 (L1 Hit)8
V 4 1 6 0 5 3 7

Access 1 (L1 Hit)9
V 4 1 6 0 5 3 7

0 4 2 6 V 5 3 7 0 4 1 6 V 5 3 7

Access 1 (L1 Miss)1 Access 7 (L1 Hit)2
0 4 1 6 V 5 3 70 4 1 6 V 5 3 7

Access 5 (L1 Hit)3
0 4 1 6 V 5 3 7

Access 6 (L1 Hit)4
0 4 1 6 V 5 3 7

Access 5 (L1 Hit)3
0 4 1 6 V 5 3 7

Access 3 (L1 Hit)5
0 4 1 6 V 5 3 70 4 1 6 V 5 3 7

Access 7 (L1 Hit)6
0 4 1 6 V 5 3 70 4 1 6 V 5 3 7

Access 5 (L1 Hit)7
0 4 1 6 V 5 3 7

Access 6 (L1 Hit)8
0 4 1 6 V 5 3 7

Access 1 (L1 Hit)9
0 4 1 6 V 5 3 7

S
e
q
.
A

S
e
q
.
,

D
E

S
e
q
.
,

B
C

Fig. 11: Access sequence designed for introducing L1 miss events only for the operation sequence A .

B. Amplifying weak signal with Tree-PLRU

We revise PRIME+RETOUCH by leveraging characteristics
of Tree-PLRU so that the attacker can deliberately produce
more miss events only when a particular operation sequence
happens. Although the latency of a single miss event cannot
be captured, when more miss events are accumulated, it will
become large enough to be measured with the coarse-grained
system timer. To infer which operation sequence happens, the
attacker has to make one operation sequence always produce
more L1 cache miss events than the others in the measurement
phase. In detail, the attacker issues a particular memory access
sequence designed to introduce additional L1 miss events only
for the operation sequence A where the victim accesses the
prefetched data. It is worth noting that if the access sequence
introduces the same amount of L1 misses to all other operation
sequences (B to E), the attacker cannot tell which operation
sequence has occurred.

Exploiting Tree PLRU state to produce more L1 cache
misses. It is non-trivial to generate an access sequence
satisfying such a condition because the attacker should consider
additional state changes made on the other result sequence
together. The major principal in constructing the proper memory
sequence is maintaining at least one different entry in all
possible Tree-PLRU states after every access. When we have

a different entry, we can easily generate different cache events
for the same memory accesses because one operation sequence
has entries that are not owned by the others and vice versa.
However, as shown in Figure 11, initially, all five operation
sequences have the same cache entries. Nonetheless, we can
satisfy the principal because the Tree-PLRU state of sequence
A and the others designate different entries as the next eviction
target due to the PLRU aware RETOUCH. In step 1 , accessing
cache line 1 makes any operation sequence to produce miss
events. However, it makes only the sequence A own different
entry 2 compared to the others (note that 2 is evicted from the
others and 3 remains instead). After that, through steps 2 - 4 ,
we should manipulate the Tree-PLRU state of A so that the
further L1 miss events always replace the entry recently brought
to the set (1). Under such Tree-PLRU settings, fetching 3
will result in a cache miss to A , but will result in a cache hit
to the others (B - E).

Amplified L1 miss event can distinguish victim’s access.
To show that the system timer can sufficiently capture the
victim access with the L1 miss signal amplification technique,
we implement a simplified victim program that prefetches
single data block mapped to a particular L1 data cache
set. Also, to minimize the noise induced by time-slicing
and show the effectiveness of PRIME+RETOUCH in M1, we
utilize synchronization primitives to yield the victim program

12

Fig. 12: The access sequence comprises of 57 load operations
repeatedly accessing cache entries in the following order 75637561. It
makes the sequence A (case of victim access) produce 14 additional
misses compared to others.

for the attacker to retouch in time. The attacker launches
PRIME+RETOUCH and produces additional memory access
sequences described in Figure 11 in the measurement. We
empirically found that 14 additional misses are enough to
clearly distinguish genuine victim accesses in both types
of core. We can produce one additional miss every four
memory access operations. Therefore, to introduce 14 additional
misses, we added 57 additional load operations including the
first access(1). Also, we measure the latency to execute 57
additional load misses with the system timer. Note that the
miss happens only when the sequence A happens. Therefore,
as shown in Figure 12, only when the victim accesses data
after the prefetch (hatched bar plot) it incurs additional clock
cycles to run 57 load operations. Compared to result shown in
Figure 10 that measure only one miss event with the system
timer, our results clearly distinguish the genuine victim access.
Although we demonstrated PRIME+RETOUCH on the restricted
environment to show its effectiveness, we believe that the attack
can be reproducible against realistic examples.

VIII. RELATED WORK

Tree-PLRU cache eviction policy abuses. [53] establishes
covert channel by encoding one-bit information with the next
eviction target based on the Tree-PLRU eviction policy. Also,
[33] theoretically shows how the shared Tree-PLRU state can
break the security of cache partitioning defenses. A noticeable
difference between PRIME+RETOUCH and [33, 53] is that it
can precisely recognize actual accesses even under the presence
of preloading and locking defense. In detail, RETOUCH op-
eration on an attacker’s primed cache line manipulates the
Tree-PLRU state in such a way that a following victim’s
access reveals its existence. However, under the same condition,
previous attacks cannot capture the victim’s access because
prefetch-based defense eliminates the leakage. Furthermore, the
previous attacks have not been fully demonstrated with realistic
and detailed examples regarding the Tree-PLRU eviction policy.
Also, PRIME+RETOUCH provides additional synchronization
information for the attacker to reduce attack noises, which has
not been explored in the previous works.

Quad-LRU cache eviction policy abuses [10] shows that the
Quad-age LRU (QLRU) eviction policy [30] can be exploited
to leak the victim’s access pattern from the L3 cache. In
essence, the QLRU records the number of accesses made
to a specific entry with a 2-bit counter dedicated to each
entry. Due to this property of QLRU, consecutive accesses
to one cache line back-to-back can be clearly observed as two
separate accesses. However, the Tree-PLRU can track only
the access order among the cache entries, not the number

of accesses. Therefore, it is more challenging to distinguish
the victim’s access when the entries are prefetched before the
access. PRIME+RETOUCH shows that RETOUCH allows the
attacker to capture the victim’s access despite the restriction of
Tree-PLRU eviction policy. Furthermore, PRIME+RETOUCH
does not evict the victim’s cache line, but [10] can induce such
evictions depending on the victim’s accesses. When preloading
and locking defense is deployed, eviction of the victim’s cache
line will be detected immediately, which can make the reloading
operations meaningless. Note that this difference makes the
PRIME+RETOUCH more stealthy. Lastly,[10] requires shared
memory, which is not a requirement of PRIME+RETOUCH.

Apple M1 on Asahi Linux. [1] is an ongoing project that aims
at running Linux operating system on Apple M1 architecture.
As part of the porting, they also provide a list of Apple’s
system registers, including configuration registers for Apple’s
proprietary PMU. However, their Linux version does not include
PMU support at the time of submission. Thus, to the best of
our knowledge, this is the first work that fully demonstrated
how the Apple PMUs and its undocumented events can be
utilized to reveal the underlying cache architecture.

Google’s Tree-PLRU attack. As a concurrent work, Google
showed that a single read of secret data is enough to leak
data efficiently by abusing the characteristic of the Tree-PLRU
cache eviction strategy in their blog post [16]. Compared to
Google’s work, PRIME+RETOUCH further demonstrates that
Tree-PLRU cache eviction side channel can even efficiently
bypass the prefetching-and-locking defenses. Also, we provide
in-depth micro-architecture analysis on Intel x86 and Apple M1
architectures, lacking in Google’s article, which validates our
claims. More importantly, we reported our attack to Intel and
received an acknowledgment about the attack method before
the Google’s publication1.

IX. CONCLUSION

One of the most important characteristics of
PRIME+RETOUCH that differentiates it from other cache
side-channel attacks is full awareness of eviction policy,
especially about Tree-PLRU. Based on the comprehensive
understanding of Tree-PLRU policy we designed PLRU Aware
RETOUCH that can completely break prefetch and locking
defense. We demonstrated our attack is feasible by showing
the leakage in AES T-Table encryption, which cannot be
achievable in the eviction based side-channels. Furthermore,
we demonstrates that PRIME+RETOUCH can leak victim’s
access pattern even without access to the fine-grained timer on
the M1 platform. Also, we first provide detailed analysis of
L1 data cache on M1 platform.

1We first reported our attack to Intel on Nov 3, 2020, and Google posted
the article on March 12, 2021.

13

REFERENCES

[1] “Asahi linux,” https://asahilinux.org/, [Online; accessed
22-July-2021].

[2] A. Abel and J. Reineke, “nanobench: A low-overhead
tool for running microbenchmarks on x86 systems,” arXiv
preprint arXiv:1911.03282, 2019.

[3] O. Acıiçmez and W. Schindler, “A vulnerability in rsa
implementations due to instruction cache analysis and its
demonstration on openssl,” in Cryptographers’ Track at
the RSA Conference. Springer, 2008, pp. 256–273.

[4] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Fine grain cross-vm attacks on xen and vmware are
possible!” IACR Cryptol. ePrint Arch., vol. 2014, p. 248,
2014.

[5] Apple, “About the Rosetta Translation Environment,” http
s://developer.apple.com/documentation/apple-silicon/abo
ut-the-rosetta-translation-environment, [Online; accessed
24-May-2021].

[6] C. Ashokkumar, B. Roy, M. B. S. Venkatesh, and B. L.
Menezes, “S-box implementation of aes is not side channel
resistant,” Journal of Hardware and Systems Security,
vol. 4, no. 2, pp. 86–97, 2020.

[7] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[8] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,

S. Capkun, and A.-R. Sadeghi, “Software grand exposure:
SGX cache attacks are practical,” in 11th USENIX Work-
shop on Offensive Technologies (WOOT 17). Vancouver,
BC: USENIX Association, Aug. 2017.

[9] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisen-
barth, “Cacheshield: Detecting cache attacks through
self-observation,” in Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy,
2018, pp. 224–235.

[10] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“Reload+ refresh: Abusing cache replacement policies to
perform stealthy cache attacks,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[11] S. Briongos, P. Malagón, J. L. Risco-Martín, and J. M.
Moya, “Modeling side-channel cache attacks on aes,”
in Proceedings of the Summer Computer Simulation
Conference, ser. SCSC ’16. San Diego, CA, USA: Society
for Computer Simulation International, 2016.

[12] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detec-
tion of cache-based side-channel attacks using hardware
performance counters,” Applied Soft Computing, vol. 49,
pp. 1162–1174, 2016.

[13] H. Cho, J. Park, D. Kim, Z. Zhao, Y. Shoshitaishvili,
A. Doupé, and G.-J. Ahn, “Smokebomb: effective mit-
igation against cache side-channel attacks on the arm
architecture,” in Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services,
2020, pp. 107–120.

[14] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+abort: A timer-free high-precision l3 cache attack
using intel tsx,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX
Association, Aug. 2017, pp. 51–67.

[15] Q. ge, Y. Yarom, D. Cock, and G. Heiser, “A survey
of microarchitectural timing attacks and countermeasures
on contemporary hardware,” Journal of Cryptographic
Engineering, vol. 8, pp. 1–27, 10 2016.

[16] Google, “A Spectre proof-of-concept for a Spectre-proof
web,” https://security.googleblog.com/2021/03/a-spect
re-proof-of-concept-for-spectre.html, [Online; accessed
22-July-2021].

[17] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa, “Strong and efficient cache side-channel
protection using hardware transactional memory,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017,
pp. 217–233.

[18] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+ flush: a fast and stealthy cache attack,” in
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2016,
pp. 279–299.

[19] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive last-level caches,”
in 24th USENIX Security Symposium (USENIX Security
15), 2015, pp. 897–912.

[20] S. Gueron, “Intel advanced encryption standard (aes)
instructions set,” Intel White Paper, Rev, vol. 3, pp. 1–94,
2010.

[21] A. Holdings, “Transactional Memory Extension (TME)
intrinsics,” https://developer.arm.com/documentation/1010
28/0009/Transactional-Memory-Extension--TME--intri
nsics, [Online; accessed 24-May-2022].

[22] ——, AArch64 Programmer’s Guides Generic Timer,
August 2019, no. ARM062-1010708621-30.

[23] ——, “Arm architecture reference manual, armv8, for
armv8-a architecture profile,” 2019.

[24] ——, “Arm architecture reference manual supplement
armv9, for armv9-a architecture profile,” 2021.

[25] M. S. Inci, B. Gülmezoglu, G. I. Apecechea, T. Eisenbarth,
and B. Sunar, “Seriously, get off my cloud! cross-vm rsa
key recovery in a public cloud,” IACR Cryptol. ePrint
Arch., vol. 2015, p. 898, 2015.

[26] Intel, “Intel® Transactional Synchronization Extensions
Asynchronous Abort,” https://software.intel.com/security-s
oftware-guidance/advisory-guidance/intel-transactional-s
ynchronization-extensions-intel-tsx-asynchronous-abort,
2019-11-12, [Online; accessed 22-September-2020].

[27] ——, “List of processors affected by transient execution
attack,” https://software.intel.com/security-software-guida
nce/processors-affected-transient-execution-attack-mitig
ation-product-cpu-model, 2020-09-11, [Online; accessed
24-September-2020].

[28] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S $ a: A
shared cache attack that works across cores and defies
vm sandboxing–and its application to aes,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp.
591–604.

[29] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait
a minute! a fast, cross-vm attack on aes,” in International
Workshop on Recent Advances in Intrusion Detection.
Springer, 2014, pp. 299–319.

[30] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power
management of the third generation intel core micro
architecture formerly codenamed ivy bridge,” in 2012
IEEE Hot Chips 24 Symposium (HCS). IEEE, 2012, pp.
1–49.

[31] E. Käsper and P. Schwabe, “Faster and timing-attack
resistant aes-gcm,” in International Workshop on Cryp-
tographic Hardware and Embedded Systems. Springer,

14

https://asahilinux.org/
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://developer.arm.com/documentation/101028/0009/Transactional-Memory-Extension--TME--intrinsics
https://developer.arm.com/documentation/101028/0009/Transactional-Memory-Extension--TME--intrinsics
https://developer.arm.com/documentation/101028/0009/Transactional-Memory-Extension--TME--intrinsics
https://software.intel.com/security-software-guidance/advisory-guidance/intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/advisory-guidance/intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/advisory-guidance/intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model

2009, pp. 1–17.
[32] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTH-

MEM: System-level protection against cache-based side
channel attacks in the cloud,” in 21st USENIX Security
Symposium (USENIX Security 12). Bellevue, WA:
USENIX Association, Aug. 2012, pp. 189–204.

[33] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “Dawg: A defense against cache timing attacks
in speculative execution processors,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 974–987.

[34] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[35] R. Könighofer, “A fast and cache-timing resistant imple-
mentation of the aes,” in Cryptographers’ Track at the
RSA Conference. Springer, 2008, pp. 187–202.

[36] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “Spyde-
tector: An approach for detecting side-channel attacks at
runtime,” vol. 18, no. 4, pp. 393–422, Aug. 2019.

[37] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel
memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[38] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser,
and R. B. Lee, “Catalyst: Defeating last-level cache
side channel attacks in cloud computing,” in 2016 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 406–418.

[39] F. Liu and R. B. Lee, “Random fill cache architecture,” in
2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, 2014, pp. 203–215.

[40] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level cache side-channel attacks are practical,” in 2015
IEEE Symposium on Security and Privacy, 2015, pp. 605–
622.

[41] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom:
How sgx amplifies the power of cache attacks,” in
International Conference on Cryptographic Hardware
and Embedded Systems. Springer, 2017, pp. 69–90.

[42] M. Neve and J.-P. Seifert, “Advances on access-driven
cache attacks on aes,” in International Workshop on
Selected Areas in Cryptography. Springer, 2006, pp.
147–162.

[43] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and countermeasures: The case of aes,” in Proceedings
of the 2006 The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology, ser. CT-RSA’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 1–20.

[44] C. Rebeiro, D. Selvakumar, and A. Devi, “Bitslice
implementation of aes,” in International Conference on
Cryptology and Network Security. Springer, 2006, pp.
203–212.

[45] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds,” in Proceedings
of the 16th ACM conference on Computer and communi-
cations security, 2009, pp. 199–212.

[46] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,

J. Stecklina, T. Prescher, and D. Gruss, “Zombieload:
Cross-privilege-boundary data sampling,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 753–768.

[47] K. So and R. N. Rechtschaffen, “Cache operations by
mru change,” IEEE Transactions on Computers, vol. 37,
no. 6, pp. 700–709, 1988.

[48] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient
cache attacks on aes, and countermeasures,” Journal of
Cryptology, vol. 23, no. 1, pp. 37–71, 2010.

[49] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A
practical attack framework for precise enclave execution
control,” in Proceedings of the 2nd Workshop on System
Software for Trusted Execution, 2017, pp. 1–6.

[50] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida, “Ridl:
Rogue in-flight data load,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 88–105.

[51] P. Vila, P. Ganty, M. Guarnieri, and B. Köpf, “Cachequery:
learning replacement policies from hardware caches,”
in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2020, pp. 519–532.

[52] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proceedings
of the 34th Annual International Symposium on Computer
Architecture, ser. ISCA ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 494–505.

[53] W. Xiong and J. Szefer, “Leaking information through
cache lru states,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 139–152.

[54] Y. Yarom and K. Falkner, “Flush+ reload: a high reso-
lution, low noise, l3 cache side-channel attack,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014,
pp. 719–732.

[55] T. Zhang, Y. Zhang, and R. Lee, “Cloudradar: A real-time
side-channel attack detection system in clouds,” vol. 9854,
09 2016, pp. 118–140.

[56] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software
approach to defeating side channels in last-level caches,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp.
871–882.

15

APPENDIX

A. Implementation of reversing L1 cache on M1

1 static void attack(void *data){
2 L1Cache =(u64 *) kmalloc(8U * 256 * 64, GFP_KERNEL);
3 //chaining the addresses to generate dependency
4 for (int index = 0; index < CACHE_WAYS+16; index++) {
5 *((u64 *)((char *)L1Cache + (index * PAGE_SIZE))) =
6 (u64)((char *)L1Cache + ((index + 1) * PAGE_SIZE));
7 }
8

9 u64 pmcr0 = (0x1 << 2) | (0x1 << 3) ;
10 u64 pmcr1 = ((0x1 << 2) | (0x1 << 3)) << 16;
11 //pmc2: Core clock cycle timer (0x2)
12 //pmc3: L1 cache miss event monitor (0xa3)
13 u64 pmesr0 = (0x2 | (0xa3 << 8));
14

15 asm volatile(
16 "Enable_Apple_PMUs:\n\t"
17 //Initializing PMCs as zero
18 "msr S3_2_C15_C0_0, xzr\n\t" //PMC0
19 "msr S3_2_C15_C2_0, xzr\n\t" //PMC2
20 "isb \n\t"
21 //set PMESR0 to select event
22 "msr S3_1_C15_C5_0, %6 \n\t"
23 "isb \n\t"
24 //set PMCR1 to enable PMC0 and PMC2
25 "msr S3_1_C15_C1_0, %5 \n\t" //PMCR1
26 //enable pmc2 again
27 "msr S3_1_C15_C0_0, %4 \n\t" //PMCR0
28 "isb \n\t"
29 "Prime_one_set:\n\t" //fill L1 data cache set
30 "ldr x13, [%7]\n\t" "ldr x13, [x13]\n\t"
31 "ldr x13, [x13]\n\t" "ldr x13, [x13]\n\t"
32 "ldr x13, [x13]\n\t" "ldr x13, [x13]\n\t"
33 "ldr x13, [x13]\n\t" "ldr x13, [x13]\n\t"
34 "Read_operations_to_change_LRU_state\n\t:"
35 "isb\n\t" "ldr x14, [%7]\n\t" "isb\n\t"
36 "Eviction:\n\t" //Read one more to kick out
37 "ldr x13, [x13]\n\t" "isb\n\t"
38 "Measurement:\n\t"
39 "mrs %0, S3_2_C15_C3_0 \n\t" //pmc3
40 "mrs %2, S3_2_C15_C2_0 \n\t" "isb\n\t" //pmc2
41 "ldr x14, [%10]\n\t" //Any cache line to monitor
42 "mrs %0, S3_2_C15_C2_0 \n\t" //pmc2
43 "mrs %2, S3_2_C15_C3_0 \n\t" "isb\n\t" //pmc3
44 :"=r"(pmc[0]), "=r"(pmc[1]), "=r"(pmc[2]), "=r"(pmc[3]),
45 :"r" (pmcr0), "r"(pmcr1), "r"(pmesr0), "r"(L1Cache)
46 :"memory","x13","x14"
47);
48 printk("Elapsed cycle:%ld\n",pmc[1]-pmc[0]);
49 printk("L1 miss :%ld\n",pmc[3]-pmc[2]);
50 }

Fig. A.1: Basic reversing code for L1 DCache on M1. PMC2 and PMC3
has been set to track core clock cycle counter and L1 data cache miss
event, respectively

System register configurations for Apple’s PMU. To use the
Apple’s PMU, several system registers should be correctly
configured. The PMCR0 register mapped to s3_1_c15_c0_0
controls basic capabilities of PMU such as which Performance
Monitoring Counter (PMC) needs to be enabled (bit 0-7), which
interrupt mode of PMUs will be used (bit 8-10), and authorizing
unprivileged user’s access on the PMU (bit 30). By default, the
bit dedicated to enabling user access on PMU is disabled on
macOS so we also disabled that bit. We checked the default
PMCR0 register value on the latest macOS, BigSur 11.4, by
loading the kext module. Also, because our measurement is
done in a very short time window, there is no need for setting
interrupt-related information for PMU control. Therefore, we
just set two bits for enabling PMC2 and PMC3 (Line 9). Apple
provides another PMU control register called PMCR1 mapped
to system register s_1_c15_c1_0. This register controls which
execution modes count events. We utilize the Linux driver

instead of user process, which runs at EL1 privilege (kernel).
Therefore, we set the PMCR1 register to allow our kernel module
to access the PMC2 and PMC3. Because the 8 bits from 16 to 23
is dedicated to controlling PMC0 to PMC7 on the EL1 privilege,
we set the two bits as shown in the Line 10. Lastly, the PMESR0
register mapped to S3_1_C15_C5_0 provides a way to select
PMU events for PMC2 to PMC5. Each PMC can track PMU
events 0 to 254, and 8 bits are assigned per PMC. The least
significant bit 0 to 7 are used to select PMU event of PMC2,
and the next 8 bits are dedicated for PMC3 event selection.

Measuring the events using the PMU. After the PMU
registers are properly initialized, one can measure the event
by reading the PMC register assigned for tracking specific
events. As shown in Line 39-40 and Line 42-43, to measure
the events caused by one memory load operation (Line 41),
PMC registers should be read before and after the memory
operation using mrs instruction. Also, to prevent the instruction
reordering between mrs and ldr instruction, we carefully insert
Instruction Synchronization Barriers (ISB). To reverse engineer
the eviction policy of the L1 cache on the M1 platform, we
follow the reversing logic described in Algorithm 1. First, we fill
a specific cache set by issuing multiple memory load operations
to the addresses mapped to the same set (Line 29-33). And
then, we enumerate any combinations of read operations (Line
34-35) to change the underlying state of the eviction policy. By
accessing one more entry mapped to the same set (Line 36-37),
we can evict one entry from the set. After the eviction, we
measure the latency of accessing a particular memory address
we used for filling the L1 cache set (Line 29-33). Based on
the latency difference measured in Figure 2, we can determine
which cache line has been evicted and recover the eviction
policy from the trace.

16

	Introduction
	Background
	Cache Architecture
	Cache Attacks and Mitigations
	Cache Replacement Policies
	Intel TSX

	Demystifying L1 Eviction Policy
	Intel Processor
	Apple M1 Processor

	Prime+Retouch
	Attack Model
	Leaky Tree-PLRU
	Synchronization in Prime+Retouch

	Pseudo Synchronized Prime+Retouch
	Limited Precise Synchronization Techniques
	Unsynchronized Retouch
	PLRU Aware Retouch
	A poor attacker's approach with delay reduction

	Prime+Retouch on X86
	Baseline Evaluation of Prime+Retouch
	Attacking AES T-Table

	Prime+Retouch against M1
	Challenge of Prime+Retouch on M1
	Amplifying weak signal with Tree-PLRU

	Related work
	Conclusion
	Appendix
	Implementation of reversing L1 cache on M1

